18.152 PROBLEM SET 2

due February 28th 9:30 am (Gradescope).
You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.
Problem 1. Let $u(x, t)$ be a solution to the heat equation on $\overline{Q_{t}}=\{(x, t)$: $0 \leq x \leq L, 0 \leq t \leq T\}$ satisfying $-u_{x}(0, t)=u_{x}(L, t) \leq 0[$ resp. $\geq 0]$ and $u(x, 0)=g(x)$. Prove

$$
\max _{\overline{Q_{T}}} u(x, t) \leq \max _{0 \leq x \leq L} g(x) \quad\left[\text { resp. } \min _{\overline{Q_{T}}} u(x, t) \geq \min _{0 \leq x \leq L} g(x)\right] .
$$

Hint: Show that $u(0, t), u(L, t) \leq \max g$ (for the first case) by modifying the proof of the maximum principle.

Problem 2. Let $u(x, t)$ satisfy $u_{t}(x, t)=u_{x x}(x, t)+f(x, t)$ and $-u_{x}(0, t)=$ $u_{x}(L, t)=0$.
(1) Show that $|u(x, t)| \leq \max _{0 \leq x \leq L}|g(x)|+t \max _{(x, s) \in \overline{Q_{t}}}|f(x, s)|$.
(2) Show that $w=\frac{t}{t+1}\left|u_{x}\right|^{2}+\frac{1}{2} u^{2}-A t$ is a subsolution to the heat equation in $\overline{Q_{T}}$, where $A=\max _{\overline{Q_{T}}}\left(\left|f_{x}\right|^{2}+|f||u|\right)$.
(3) (Bonus problem) Establish an upper bound for $\left|u_{x}(x, t)\right|^{2}$ where $t>0$ in terms of f_{x}, f, g, and t.
$\operatorname{Hint}(1)$: Show that $v(x, s)=u(x, s)-A s$ is a subsolution to the heat equation, where $A=\max _{\overline{Q_{t}}}|f|$. Then, apply the result in Problem 1 .

Problem 3. Let $u(x, y, t)$ be a solution to the heat equation. Check that $w=\frac{t}{t+1}\left|\nabla^{2} u\right|^{2}+\frac{1}{2}|\nabla u|^{2}$ is a subsolution, where $\left|\nabla^{2} u\right|^{2}=u_{x x}^{2}+2 u_{x y}^{2}+u_{y y}^{2}$.

Problem 4. Let $u(x, t)$ be a solution to the heat equation on $\mathbb{R} \times[0, T]$ satisfying $|u(x, t)| \leq C$ on $\mathbb{R} \times[0, T]$ for some constant C and also satisfying $\lim _{|x| \rightarrow+\infty}\left|u_{x}(x, 0)\right|=0$. Prove that $\lim _{|x| \rightarrow+\infty}\left|u_{x}(x, t)\right|=0$ holds for all $t \in[0, T]$.
$\operatorname{Hint}(1)$: Apply the maximum principle to $w=\eta^{2}\left|u_{x}\right|^{2}+20 R^{2} u^{2}$ where

$$
\eta=\left(R^{2}-|x-2 R|^{2}\right)_{+}=\max \left\{0, R^{2}-|x-2 R|^{2}\right\} .
$$

Then, pass R to $+\infty$ and $-\infty$.
Problem 5 (Bonus). Let $u(x, y, t)$ be a solution to the heat equation on $\Omega \times[0, T]$ satisfying $u=0$ on $\partial \Omega \times[0, T]$ and $u(x, y, 0)=g(x, y)$. Suppose that $\partial \Omega$ is a smooth curve. Establish an upper bound for the gradient $|\nabla u|$ in terms of $g, \nabla g$, and the minimum of radius of circles contacting $\partial \Omega$ from outside.

Consider a circle outside Ω touching a point $\left(x_{0}, y_{0}\right)$ of $\partial \Omega$. Put the center of the circle at the origin by translation. And construct a rotationally symmetric function $\varphi(x, y)$ satisfying $\varphi\left(x_{0}, y_{0}\right)=0, \Delta \varphi \leq 0$, and $\varphi \geq g$.

