18.152 PROBLEM SET 2

due February 28th 9:30 am (Gradescope).

You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. Let u(x,t) be a solution to the heat equation on $\overline{Q_t} = \{(x,t):$ $0 \leq x \leq L, 0 \leq t \leq T$ satisfying $-u_x(0,t) = u_x(L,t) \leq 0$ [resp. ≥ 0] and u(x,0) = g(x). Prove

$$\max_{\overline{Q_T}} u(x,t) \le \max_{0 \le x \le L} g(x) \qquad [resp.\min_{\overline{Q_T}} u(x,t) \ge \min_{0 \le x \le L} g(x)].$$

Hint: Show that $u(0,t), u(L,t) \leq \max q$ (for the first case) by modifying the proof of the maximum principle.

Problem 2. Let u(x,t) satisfy $u_t(x,t) = u_{xx}(x,t) + f(x,t)$ and $-u_x(0,t) =$ $u_x(L,t) = 0.$

- (1) Show that $|u(x,t)| \leq \max_{0 \leq x \leq L} |g(x)| + t \max_{(x,s) \in \overline{Q_t}} |f(x,s)|.$ (2) Show that $w = \frac{t}{t+1} |u_x|^2 + \frac{1}{2}u^2 At$ is a subsolution to the heat equation in $\overline{Q_T}$, where $A = \max_{\overline{Q_T}} \left(|f_x|^2 + |f||u| \right).$
- (3) (Bonus problem) Establish an upper bound for $|u_x(x,t)|^2$ where t > 0in terms of f_x , f, g, and t.

Hint(1): Show that v(x,s) = u(x,s) - As is a subsolution to the heat equation, where $A = \max_{\overline{O_t}} |f|$. Then, apply the result in Problem 1.

Problem 3. Let u(x, y, t) be a solution to the heat equation. Check that $w = \frac{t}{t+1} |\nabla^2 u|^2 + \frac{1}{2} |\nabla u|^2$ is a subsolution, where $|\nabla^2 u|^2 = u_{xx}^2 + 2u_{xy}^2 + u_{yy}^2$.

Problem 4. Let u(x,t) be a solution to the heat equation on $\mathbb{R} \times [0,T]$ satisfying $|u(x,t)| \leq C$ on $\mathbb{R} \times [0,T]$ for some constant C and also satisfying $\lim_{|x|\to+\infty} |u_x(x,0)| = 0$. Prove that $\lim_{|x|\to+\infty} |u_x(x,t)| = 0$ holds for all $t \in [0, T].$

Hint(1): Apply the maximum principle to $w = \eta^2 |u_x|^2 + 20R^2u^2$ where $m = (R^2 - |w| - 2R|^2) = \max\{0, R^2 - |w| - 2R|^2\}$

$$\eta = (R^2 - |x - 2R|^2)_+ = \max\{0, R^2 - |x - 2R|^2\}.$$

Then, pass R to $+\infty$ and $-\infty$.

Problem 5 (Bonus). Let u(x, y, t) be a solution to the heat equation on $\Omega \times [0,T]$ satisfying u = 0 on $\partial \Omega \times [0,T]$ and u(x,y,0) = g(x,y). Suppose that $\partial \Omega$ is a smooth curve. Establish an upper bound for the gradient $|\nabla u|$ in terms of g, ∇g , and the minimum of radius of circles contacting $\partial \Omega$ from outside.

Consider a circle outside Ω touching a point (x_0, y_0) of $\partial \Omega$. Put the center of the circle at the origin by translation. And construct a rotationally symmetric function $\varphi(x,y)$ satisfying $\varphi(x_0,y_0) = 0$, $\Delta \varphi \leq 0$, and $\varphi \geq g$.